Calculus I	Name:
Study Guide 7	Class:
Due Date:	Score:

No Work \Leftrightarrow No Points

Use Pencil Only \Leftrightarrow Be Neat & Organized

1. (4 points) Find a value for the constant k that will make the following function continuous.

$$f(x) = \begin{cases} kx^2, & x \le 2\\ kx + 8, & x > 2 \end{cases}$$

1. _____

2. (4 points) Evaluate: $\lim_{x\to a} \frac{x^2+ax-2a^2}{x^3-a^3}$, express any restriction for your final answer.

2.

3. (4 points) Evaluate: $\lim_{x \to -1} \frac{1 - \cos(x^2 - 1)}{x^2 - 1}$

3. ____

4. (4 points) Evaluate:
$$\lim_{x\to 2} \frac{x^{-1} - 2^{-1}}{x - 2}$$

4. _____

5. (4 points) Evaluate:
$$\lim_{x \to -2} \frac{x^2 - 4}{|x| - 2}$$

5. _____

6. (4 points) Evaluate:
$$\lim_{x\to 16} \frac{x-16}{\sqrt{x}-4}$$

6. _____

7. (5 points) Evaluate
$$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$$
 for $f(x)=\cos x$.

8. (3 points) Show that the equation $x^3 + x^2 - 2x = 1$ has at least one solution on the interval [-1,1].

- 9. Given $\lim_{x\to a} f(x) = b$, find $\lim_{x\to a} f(-x)$
 - (a) (2 points) if f(x) is an even function.

(b) (2 points) if f(x) is an odd function.

(b) __

10. (4 points) Show that the equation $2\sin x + 1 = x$ has at least one solution on the interval [-1,3] .

10. _____

11. (5 points) Evaluate $\lim_{x\to 0} \frac{\sqrt{4x+1}-\sqrt{3x+1}}{x} \ .$

11. _____

12. (5 points) Evaluate $\lim_{x\to 6} \frac{\frac{1}{x+4} - \frac{1}{10}}{x^2 - 36}$.

12